Wednesday, October 2, 2013

Current Transformers Selection Guide

Low voltage current transformers (CTs)

Low voltage current transformers (CTs)

Determination of the customer’s needs

Electrical characteristics of the primary circuits suivant Norme IEC

The primary circuits of the current transformer must withstand the constraints related to the medium voltage network to which it is connected.

Rated frequency

This is the frequency of the installation.
A CT defined for 50 Hz can be installed on a 60 Hz network with the same level of accuracy. However, the opposite is not true. For a non-referenced unit, it is vital to indicate the rated frequency on the order from.

Rated voltage of the primary circuit (Upn)

General case:
Insulation level continuity for the whole installation will be ensured if the rated voltage of the CT used is the rated voltage of the installation. The rated voltage determines the insulation level of the equipment. Generally we choose the rated voltage based on the duty voltage, Us, according to the following table:
Rated voltage of the primary circuit - General case
Rated voltage of the primary circuit - General case

Specific case:
If the CT is installed on a bushing or a cable providing insulation, the CT can be LV ring type.

Primary service current (Ips)

Knowledge about the primary service current will enable us to determine the rated primary current for the CT taking into account any eventual derating.
The service current depends on the power traversing the primary windings of the CT.
If:
S = apparent power in VA
Ups = primary service voltage in V
P = active power of the motor in W
Q = reactive power of the capacitors in VAR
Ips = primary service current in Amp
We will have :
Incoming cubicle:
Incoming cubicle - Primary service current
Generator incomer:
Generator incomer - Primary service current
Transformer feeder:
Transformer feeder - Primary service current
Motor feeder:
Motor feeder - Primary service current
η = efficiency of the motor
If you do not know exact values for j and h as a first approximation, you can assume that: cos j = 0.8 ; h = 0.8
Capacitor feeder:
1.3 is a de-rating factor of 30% which compensates for heat-up due to harmonics in the capacitors.
Capacitor feeder - Primary service current
Bus tie:
The Ips current in the CT is the highest permanent current that can circulate in the connection.

Measurement of insulation resistance (IR)

Megger 10 Kilovolt Insulation Resistance Tester
Megger MIT1020 10-kV insulation resistance testers are all designed specifically to assist the user with the testing and maintenance of high voltage equipment.

Introduction

The measurement of insulation resistance is a common routine test performed on all types of electrical wires and cables. As a production test, this test is often used as a customer acceptance test, with minimum insulation resistance per unit length often specified by the customer. The results obtained from IR Test are not intended to be useful in finding localized defects in the insulation as in a true HIPOT test, but rather give information on the quality of the bulk material used as the insulation.
Even when not required by the end customer, many wire and cable manufacturers use the insulation resistance test to track their insulation manufacturing processes, and spot developing problems before process variables drift outside of allowed limits.

Selection of IR Testers (Megger):

Insulation testers with test voltage of 500, 1000, 2500 and 5000 V are available. The recommended ratings of the insulation testers are given below:
Voltage LevelIR Tester
650V500V DC
1.1KV1KV DC
3.3KV2.5KV DC
66Kv and Above5KV DC

 Test Voltage for Meggering:

When AC Voltage is used, The Rule of Thumb is:
Test Voltage (A.C) = (2X Name Plate Voltage) +1000.
When DC Voltage is used (Most used in All Megger)
Test Voltage (D.C) = (2X Name Plate Voltage).

Equipment / Cable RatingDC Test Voltage
24V To 50V50V To 100V
50V To 100V100V To 250V
100V To 240V250V To 500V
440V To 550V500V To 1000V
2400V1000V To 2500V
4100V1000V To 5000V

Measurement Range of Megger:

Test voltageMeasurement Range
250V DC0MΩ to 250GΩ
500V DC0MΩ to 500GΩ
1KV DC0MΩ to 1TΩ
2.5KV DC0MΩ to 2.5TΩ
5KV DC0MΩ to 5TΩ

Precaution while Meggering

Before Meggering:

Make sure that all connections in the test circuit are tight. Test the megger before use, whether it gives INFINITY value when not connected, and ZERO when the two terminals are connected together and the handle is rotated.

During Meggering:

Make sure when testing for earth, that the far end of the conductor is not touching, otherwise the test will show faulty insulation when such is not actually the case.
Make sure that the earth used when testing for earth and open circuits is a good one otherwise the test will give wrong information. Spare conductors should not be meggered when other working conductors of the same cable are connected to the respective circuits.

After completion of cable Meggering:

  • Ensure that all conductors have been reconnected properly.
  • Test the functions of Points, Tracks & Signals connected through the cable for their correct response.
  • In case of signals, aspect should be verified personally.
  • In case of points, verify positions at site. Check whether any polarity of any feed taken through the cable has got earthed inadvertently.

Safety Requirements for Meggering:

  • All equipment under test MUST be disconnected and isolated.
  • Equipment should be discharged (shunted or shorted out) for at least as long as the test voltage was applied in order to be absolutely safe for the person conducting the test.
  • Never use Megger in an explosive atmosphere.
  • Make sure all switches are blocked out and cable ends marked properly for safety.
  • Cable ends to be isolated shall be disconnected from the supply and protected from contact to supply, or ground, or accidental contact.
  • Erection of safety barriers with warning signs, and an open communication channel between testing personnel.
  • Do not megger when humidity is more than 70 %.
  • Good Insulation: Megger reading increases first then remain constant.
  • Bad Insulation: Megger reading increases first and then decreases.
  • Expected IR value gets on Temp. 20 to 30 decree centigrade.
  • If above temperature reduces by 10 degree centigrade, IR values will increased by two times.
  • If above temperature increased by 70 degree centigrade IR values decreases by 700 times.

How to use Megger

Meggers is equipped with three connection Line Terminal (L), Earth Terminal (E) and Guard Terminal (G).
Megger connections
Megger connections

Resistance is measured between the Line and Earth terminals, where current will travel through coil 1. The “Guard” terminal is provided for special testing situations where one resistance must be isolated from another. Let’s us check one situation where the insulation resistance is to be tested in a two-wire cable.
To measure insulation resistance from a conductor to the outside of the cable, we need to connect the “Line” lead of the megger to one of the conductors and connect the “Earth” lead of the megger to a wire wrapped around the sheath of the cable.

Megger configuration
Megger configuration

In this configuration the Megger should read the resistance between one conductor and the outside sheath.
We want to measure Resistance between Conductor- 2 to sheaths but actually megger measure resistance in parallel with the series combination of conductor-to-conductor resistance (Rc1-c2) and the first conductor to the sheath (Rc1-s).
If we don’t care about this fact, we can proceed with the test as configured. If we desire to measure only the resistance between the second conductor and the sheath (Rc2-s), then we need to use the megger’s “Guard” terminal.
Megger - Connecting guard terminal
Megger - Connecting guard terminal

Connecting the “Guard” terminal to the first conductor places the two conductors at almost equal potential.
With little or no voltage between them, the insulation resistance is nearly infinite, and thus there will be no current between the two conductors. Consequently, the Megger’s resistance indication will be based exclusively on the current through the second conductor’s insulation, through the cable sheath, and to the wire wrapped around, not the current leaking through the first conductor’s insulation.
The guard terminal (if fitted) acts as a shunt to remove the connected element from the measurement. In other words, it allows you to be selective in evaluating certain specific components in a large piece of electrical equipment. For example consider a two core cable with a sheath.
As the diagram below shows there are three resistances to be considered.
Meggering wiring
Meggering wiring

If we measure between core B and sheath without a connection to the guard terminal some current will pass from B to A and from A to the sheath. Our measurement would be low. By connecting the guard terminal to A the two cable cores will be at very nearly the same potential and thus the shunting effect is eliminated.